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ABSTRACT

In this paper, we present a multi-channel convolution neural
network (CNN) for blind 360-degree image quality assess-
ment (MC360IQA). To be consistent with the visual content
of 360-degree images seen in the VR device, our model adopt-
s the viewport images as the input. Specifically, we project
each 360-degree image into six viewport images to cover om-
nidirectional visual content. By rotating the longitude of the
front view, we can project one omnidirectional image onto
lots of different groups of viewport images, which is an ef-
ficient way to avoid overfitting. MC360IQA consists of t-
wo parts, multi-channel CNN and image quality regressor.
Multi-channel CNN includes six parallel ResNet34 network-
s, which are used to extract the features of the corresponding
six viewport images. Image quality regressor fuses the fea-
tures and regresses them to final scores. The results show that
our model achieves the best performance among the state-of-
art full-reference (FR) and no-reference (NR) image quality
assessment (IQA) models on the available 360-degree IQA
database.

Index Terms— Blind Image Quality Assessment, 360-
degree image, Virtual Reality, multi-channel CNN

1. INTRODUCTION

360-degree images/videos, also known as panoramic, omnidi-
rectional or VR images/videos, have been accessed by more
people with the rapid development of Virtual Reality (VR)
technology. As a new type of multimedia, 360-degree im-
ages/videos record views in every direction at the same time.
By rotating the head orientation, users can see the content
of images/videos from any directions through VR devices.
The immersive experience of real-world scenes makes the
360-degree images/video popular in social media, live con-
cert events or sports events, and VR movies.

Due to the omnidirectional view recording, 360-degree
images/videos often have high resolution and are often com-
pressed heavily for easy transmission and storage. Howev-

er, 360-degree images/videos at low resolution or with seri-
ous compression artifacts usually make people feel uncom-
fortable, sometimes even produce motion sickness, which
dramatically degrades the quality of experience (QoE) [1].
Therefore, it is crucial to study the quality assessment of 360-
degree images, especially for compressed 360-degree images,
which has significant implications in leading the development
of 360-degree image compression.

Image quality assessment (IQA) has been thoroughly s-
tudied in the past twenty years. However, as far as we know,
limited work has been done on the quality assessment of 360-
degree images. IQA algorithms can be generally classified in-
to full-reference IQA (FR IQA), reduced-reference IQA (R-
R IQA) and no-reference IQA (NR IQA). FR IQA and RR
IQA models need full and part reference image information
respectively while NR IQA takes only the distortion image as
input.

For FR IQA, several PSNR-based IQA models have been
proposed for 360-degree images. These models mainly con-
sider the geometric distortion occurring in the projection.
360-degree images are usually mapped to the rectangular
plane for easy storage and visualization. The equirectangu-
lar projection is the simplest and most widely used projection
for 360-degree images. Yu et al. [2] proposed a sphere based
PSNR (S-PSNR), which computes PSNR for the set of points
uniformly distributed on a spherical surface instead of on the
rectangular domain. Sun et al. [3] proposed the Weighted
Spherical PSNR (WS-PSNR), of which the weight is deter-
mined by how much the sampled area is stretched in the repre-
sentation. Zakharchenko et al. [4] proposed Craster Parabol-
ic Projection PSNR (CPP-PSNR). They remapped both the
distorted and reference images to the Craster parabolic pro-
jection and computed the PSNR in that domain. However,
due to the inconsistency between PSNR and the experience
of the human vision system (HSV), the performance of these
models is significantly inferior to the traditional successful
IQA models for 2D natural images according to the studies
of [5] [6] [7]. For NR IQA, as far as we know, there is no NR
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Fig. 1: Distortion comparison between the viewport image
seen in VR devices and its corresponding omnidirectional im-
age in the equirectangular format.

Fig. 2: Illustration for viewport images when the user sees the
omnidirectional image in VR devices at a certain head pose.

IQA model specially designed for 360-degree images. The
study in [5] also revealed that the current general purposed
NR IQA models perform poorly on omnidirectional images.
So, it is essential to develop NR IQA models for 360-degree
images.

In this paper, we propose a multi-channel convolution
neural network (CNN) model for NR 360-degree image qual-
ity assessment (MC360IQA). Different from the methods
mentioned above, we use the viewport-based images project-
ed by equirectangular images instead of equirectangular im-
ages. We argue that equirectangular images suffer great struc-
ture distortion which seriously affects human’s perception of
omnidirectional image quality. Figure 1 shows the distortion
comparison between the viewport image seen in the VR de-
vice and its corresponding omnidirectional image in the e-
quirectangular format. It shows that the compression artifacts
in the equirectangular projection are block-based while the
distortion seen in the viewport is totally different. This il-
lustrates why many NR IQA algorithms work poorly in this
field. Therefore, we use the viewport-based images as the in-
put of MC360IQA. In the pre-processing stage, we project
the equirectangular image into six equally-sized viewport im-
ages, represented each cube face with a field of view of 90
degree. We also alter the longitude of view angle to project
many different groups of viewport images from one omnidi-
rectional to avoid overfitting. MC360IQA model consists of
two part. The first part includes six parallel CNN channels
used to extract features of the six viewport images. The sec-
ond part is the image quality regressor, which concatenates
the features of the six viewport images and regresses them to
the final quality scores. The experimental results show that

Fig. 3: The viewport images and their corresponding part in
the omnidirectional image

the proposed model achieves the best performance among the
state-of-art NR and FR IQA models.

The rest of this paper is organized as follows. In section 2,
we describe the implementation of the MC360IQA in detail.
In section 3, we give the results of MC360IQA and compare
the performance of MC360IQA with other popular IQA mod-
els on the available 360-degree IQA database. Section 4 gives
the concluding remarks.

2. PROPOSED METHOD

In this section, we detail the pipeline of MC360IQA for eval-
uating the 360-degree image quality. The model takes a 360-
degree image as input and firstly projects it into six viewport
images using the method described in Section 2.1. Then six
viewport images are sent to the multi-channel CNN, the de-
tails of which we depict in Section 2.2. The features extracted
by multi-channel CNN are fused and finally regressed to the
objective quality score.

2.1. Our projection method

When users see the visual content of the 360-degree image
in the VR device, the equirectangular image is first represent-
ed by a sphere in 3D spherical coordinates and then the visual
content is rendered as a plane segment tangential to the sphere
decided by the view angle and the FoV of the VR device. We
show this process in Fig. 2. Users can view all the contents
of the 360-degree image by rotating the head to change the
viewing angle. When assessing the quality of a 360-degree
image, the viewer should look around the 360-degree image
from several view angles to cover the entire 360-degree im-
age.

Inspired by this behavior, we propose using the viewport-
based images to evaluate omnidirectional image quality. The
pixel in the viewport image can be calculated by mapping
it backwards to find the best estimate pixel in the spher-
ical image. The detailed procedure can be found in [2].
We set the field of view (FoV) as 90 degree, which is con-
sistent with the FoV of most popular VR devices such as
HTC VIVE, Oculus, Gear VR, etc. To cover the full vi-
sual content of the omnidirectional image, six viewport im-
ages are rendered by one omnidirectional image. Two of
these views are oriented towards the nadir and zenith, and



Fig. 4: The network architecture of MC360IQA. The multi-channel CNN includes six parallel ResNet34. We omit the three of
them which are sent left, right and back view images for saving the layout.

the other four are pointed towards the horizon but rotat-
ed horizontally to cover the entire band at the sphere’s e-
quator, which is shown in Fig. 3. We use the symbol-
s V Pfront,V Pback,V Pright,V Pleft,V Ptop,V Pdown to repre-
sent the six viewport images in the front, back, right, left,
top and down view, respectively. To avoid overfitting, we
rotate the longitude of the view angle of the front view
from 0 to 360 degree with an interval of ϕ degree and
then project omnidirectional images to six viewport images
at each front view angle respectively. Finally, we can get
N groups of viewport images derived from one omnidirec-
tional image. We denote them as V P i

view, where view ∈
{front, back, right, left, top, down} and i ∈ [1, 2, ..., N ],
N = 360/ϕ.

2.2. MC360IQA

Convolution Neural Networks have shown great performance
in solving visual signal problems in recent years. Many
successful CNN models such as VGG [8], GoogleNet [9],
ResNet [10] have been proposed for solving image recogni-
tion, detection, segmentation problems, etc. These models
usually have strong ability in extracting high-level semantic
features. We adopt ResNet as the base CNN-channel since
Resnet has an excellent generalization ability in lots of visu-
al tasks and has a relatively small memory consumption. We
detail the architecture of MC360IQA as follows.

The MC360IQA model consists of two parts, multi-
channel CNN and image quality regressor. We illustrate the
framework in Fig. 4. The multi-channel CNN includes six
parallel ResNet34s which are used to extract features of corre-
sponding six viewport images. ResNet utilizes residual learn-
ing to further deepen the CNN network, which can be gen-
erally represented by several deeper bottleneck architectures.
Each bottleneck includes three layers convolutions where the
dimension of kernels is 1× 1, 3× 3, 1× 1, respectively. The
identity shortcut connection is inserted from the input of bot-
tleneck to the output of the bottleneck. The complete network
structure can be found in [10]. The six ResNet34 channels

share the same weights and are trained to extract the unified
features for different compression artifacts. We replace the
last layer of each baseline ResNet34 with 10 output features
by average pooling. The image quality regressor first fuses
the features by concatenating the outputs of multi-channel C-
NN. According to [11], users focus more on the equator area
and seldom view the nadir and zenith area, which indicates
the importance of each viewport image is different for the fi-
nal quality score. Therefore, another function of the image
quality regressor is to assign weights for different viewport
images. Finally, the quality score can be calculated by using
a full connected layer in the image quality regressor.

For the end-to-end training, the loss function is set as:

L = (qpredict − qlabel)
2 (1)

where qpredict is the predicted score calculated by M-
C360IQA and qlabel is the mean opinion score (MOS) derived
from subjective experiments.

3. EXPERIMENTS AND RESULTS

3.1. Dataset
Compressed VR Image Quality Database (CVIQD2018) [5]
is the only available compressed 360-degree image quali-
ty database so far. CVIQD2018 consists of 16 source 360-
degree images and 528 compressed ones from three codecs.
Each source image was compressed with quality factors rang-
ing from 50 to 0 with an interval of -5 by JPEG codec and
was compressed with factors from 30 to 50 with an interval
of 2 by H.264/AVC and H.265/HEVC codecs. The database
includes diverse scenes such as landscapes, towns, objects,
and persons, etc. All the images have the same resolution of
4096×2048. The Single-Stimulus (SS) was adopted to gather
quality ratings. The quality ratings lie in the range of [1,10],
where a higher score indicates better visual quality.

3.2. Experiment setup
The proposed MC360IQA is implemented on pytorch [12].
We use the Resent34 as the baseline CNN model. The base-



Table 1: Performance comparison between 11 state-of-art FR
and NR IQA models and two proposed metrics. We highlight
the three best performing models in each column.

Metrics SRCC PLCC RMSE

FR

PSNR 0.7320 0.7662 9.0397

S-PSNR 0.7574 0.7819 8.7695

WS-PSNR 0.7467 0.7741 8.9066

CPP-PSNR 0.7498 0.7755 8.8816

SSIM 0.8857 0.8972 6.214

MS-SSIM 0.8762 0.8875 6.4836

NR

QAC 0.8299 0.8681 6.9820

GMLF -0.2246 0.6134 11.1101

NIQE -0.5126 0.5329 11.9038

BRISQUE -0.7448 0.7641 9.0751

SISBLIM -0.6554 0.7439 9.4014

MC360IQAorigin 0.9069 0.9271 6.3924

MC360IQAmean 0.9153 0.9391 5.6728

line CNN weights are initialized by training on ImageNet [13]
and the weights of fully connected layers are randomly initial-
ized. The interval angle ϕ was set as 2 degree, which means
180 groups of six viewport images can be rendered from one
omnidirectional image. We trained and tested our model on a
server with Intel Xeon Silver 4114 CPU @ 2.20GHz, 64 GB
RAM and NVIDIA GTX 1080Ti. The batch size was set as
50. We chose the RMSprop algorithm [14] for speeding up
mini-batch learning. The learning rate and alpha were set as
0.0001 and 0.9, respectively. We stop the training at 20 itera-
tions. For the fair evaluation, we used 5-fold cross validation.

3.3. Results
To calculate the performance of the proposed model, three
statistical indices are applied for consistency performance
comparison with predicted scores obtained from the proposed
model and subjective MOSs, including Spearman rank cor-
rection coefficient (SRCC), Pearsons liner Correlation Coef-
ficient (PLCC) and Root mean square error (RMSE).

We compare our model with 6 popular FR IQA mod-
els, which are PSNR, WS-PSNR [3], CPP-PSNR [4], S-
PSNR [2], SSIM [15], MS-SSIM [16]. Among these, WS-
PSNR, CPP-PSNR and S-PSNR are IQA models special-
ly designed for 360-degree images. Five popular general-
purposed NR IQA models are compared with our model,
which are BRISQUE [17], GMLF [18], NIQE [19], QAC [20]
and SISBLIM [21]. For the MC360IQA, two metrics are
proposed to measure the quality of 360-degree images. The
first metric uses the score calculated by MTC360IQA using
the viewport images without longitude rotating, denoted by
MC360IQAorigin. The second metric uses the mean score

of N groups of viewport images calculated by MC360IQA,
denoted by MC360IQAmean. We list the performance of
these models in Table 1. The best three performance are high-
lighted in each column in Table 1.

MC360IQAorigin = MC360IQA(V P 1
view)

MC360IQAmean =

N∑
i=1

MC360IQA(V P i
view)

(2)

where view ∈ {front, back, right, left, top, down} and i ∈
[1, 2, ..., N ], N = 360/ϕ.

From the performance listed on Table 1, we have sever-
al observations. First, our proposed model achieves the best
performance among all the state-of-art FR and NR IQA mod-
els on the database, which demonstrates the effectiveness of
the proposed model. Second, most general purposed NR IQA
models perform poorly. This indicates that the existing N-
R IQA models are not suitable for 360-degree image quali-
ty evaluation. Fortunately, the proposed model makes up for
this gap. Third, we observed that the current PSNR-based
IQAs which are specially designed for 360-degree images
also perform poorly and do not improve much performance
compared to PSNR. Therefore, FR IQA for 360-degree im-
ages also needs to be studied. In the future study, we hope to
extend our model to the FR IQA and improve the performance
of the model further. Forth, the metric MC360IQAmean is s-
lightly better than the metric MC360IQAorigin. The reason
is that the mean score of the N groups of viewport images
is more stable and less susceptible to abnormal predictive s-
cores. But MC360IQAmean needs to consume N times of
computing resources than that of MC360IQAorigin. In com-
parison, MC360IQAorigin is more efficient.

4. CONCLUSION

In this paper, we propose the first blind IQA model for 360-
degree image, named MC360IQA. The MC360IQA uses the
multi-channel CNN architecture to extract the features of
viewport images projected by omnidirectional images and
then regresses features to objective scores. According to us-
ing different groups of viewport images, we propose the two
IQA metrics. The first one uses the scores calculated by view-
port images without data augmentation and the second one
uses the mean scores of lots of groups of viewport images
with data augmentation via altering the longitude of view di-
rection. The experimental results show that the proposed two
metrics achieve the best performance among the state-of-art
NR and FR IQA models.
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